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We establish extension theorems for functions in spaces which arise naturally in
studying interpolation by radial basic functions. These spaces are akin in some way
to the non-integer-valued Sobolev spaces, although they are considerably more
general. Such extensions allow us to establish local error estimates in a way which
we make precise in the introductory section of our paper. There are many other
applications of these fundamental results, including improved L, error estimates for
interpolation by shifts of a single basic function, but these applications have been
left to a later paper.  © 2001 Elsevier Science (USA)

1. INTRODUCTION

An interpolation problem using translates of a radial basic function
takes the following form. Interpolation data are given consisting of distinct
points xi, ..., x,, € R" and corresponding values d,, ..., d,, € R. We wish to
interpolate these data by a function of the form

=3 wdlxr—xD+ Y v,p00. )

i=1 j=1

The notation used here is as follows. The function ¢ is real-valued on
R, ={yeR:y>0}, and |-| denotes the Euclidean norm. The functions
Pis .., p; form a basis for IT, _,, the space of polynomials on R” whose total
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degree is at most k— 1. Thus £ is the dimension of I7,_,. The parameters
Wi - W, and vy, ..., v, are real numbers to be determined by the equations

s(x;)=d,, j=1,...,m,

and

Z luipj(xi)=09 j=1,..,¢L

i=1

The first condition ensures that our chosen s interpolates the data. The
second is included to allow us to obtain a unique solution to the system,
provided the points x,, ..., x,,, the parameter k, and the function ¢ satisfy
certain conditions. First, we ask that ¢ be strictly conditionally positive
definite of order k, by which we mean the following. If, for any set of dis-
tinct points x,, X,, ..., X, € R” and constants ¢,, ¢,, ..., ¢, (not all of which
are zero), the quadratic form

Y Y cedlln—xD)>0

i=1 j=1
whenever

r

Y ¢p(x)=0  forall pell,_,,

i=1

then we say ¢ is strictly conditionally positive definite of order k. Our
second requirement for a unique solution is that x, ..., x,, be unisolvent
with respect to I7,_,. That is, if ge IT,_, satisfies g(x;) =0 for all j=
1,...,m then ¢ must be the zero polynomial. What is important to note
here is that in many common choices of ¢, k is at most 2. Therefore at
worst we are adding a linear polynomial to our interpolant and often no
polynomial part is required. Thus the unisolvency condition is not as prob-
lematic as it seems at first glance. Some examples of ¢ with the value of k&
needed to obtain a unique solution are listed below:

Bare norm o(r)=r k=0
Thin plate spline ¢(r) =r’Inr k=2
Multiquadric ()= /r*+c* k=0
Gaussian o(r) = e k=0

Notice that in three of these cases k = 0, indicating that no polynomial part
is used in the interpolant.
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Duchon [2] was the first to look at these types of interpolation problems
and used a variational approach. He was interested in surface splines where
the radial function takes the form ¢(r) =r*Inr or ¢(r)=r* for r>0.
Simple examples of these are the bare norm and thin plate spline. These
were shown by Duchon [2] to be the natural multivariate analogue of
natural splines.

Later work focused on the solvability of the interpolation problem and
its reliance on the notion of conditionally positive definite functions.
Inspired by the numerical results of Hardy [4], the seminal paper by
Micchelli [13] proved, amongst other things, that the multiquadric
interpolation problem was always solvable.

Some powerful results have been achieved by employing both of these
ideas. One begins with a conditionally positive definite function and builds
around it a native space in which one can carry out variational arguments.
Fundamental papers in this area are those of Madych and Nelson [11, 12],
Wu and Schaback [18] and several papers by Schaback which are acces-
sible through the survey [15].

We return now to Duchon’s variational approach. The interpolant is
shown to be a minimal norm interpolant in the following sense. One has a
space of functions X and a seminorm |-| defined on X. Given f € X we
wish to find s € X such that

@  s(x;) = f(x)), forall j=1,...,m, @
@G sl < v, for all v € X satisfying v(x;) = f(x;) forallj=1,...,m.

The function s is known as the minimal norm interpolant to f on
X, ..., X,,. A useful result concerning minimal norm interpolants is that
| —s|*> = |f|*—|s|>. We shall make use of this at the end of the section.

Duchon used spaces of distributions which were generalisations of
Beppo-Levi spaces. We shall be interested in the function spaces intro-
duced by Light and Wayne in [10]. A measurable weight function v is
introduced and the seminorm is defined, for k € Z_, as follows:

_ 1/2
1= L e, 0F@ruwas)”

The constants ¢, are chosen so as to make the seminorm radially symme-
tric, whenever v is radially symmetric. The Fourier transform is taken in
the distributional sense. The space of functions is given by

Z(R)={feS": D/‘? e L},.(R") for all o« € Z7 with |a| = k and |f| < o0}.

Here we use S’ to denote the space of tempered distributions. Light and
Wayne demonstrated that, for suitable choices of the weight function v,
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and for suitable values of k, Z(R") was embedded in C(R"), and thus point
evaluations made sense.

We turn our attention now to error estimates on a space X with semi-
norm |-|. We interpolate a function f e X at points xi, ..., x,, by se€ X.
A typical error estimate has the form

[f(x)—s(x)| < P(x, X1, .. X,,) | f =5, forall xeR"

Here &£ is the so-called power function whose form can be explicitly
obtained. In order to be able to use this we need to know f —s everywhere
on R”". Duchon explained why it would be useful to be able to obtain for
Q < R"a “local” estimate of the form

f(x)=s(x)| < P(x, x1, -y X)) | [ —5la> forall xeQ. 3)

We notice that a localised version of the seminorm appears on the right-
hand side and the error estimate is now only true for x € Q. Using this one
can deduce improved L, error estimates in terms of the spacing of the
interpolation points x,, ..., x,,. Let 4 = {x,, ..., x,,} and

h=max min |y—x|.
yefR xed

Suppose that using the original error estimate one can obtain a constant C
independent of f and 4 such that ||f —s|, o, < Ch’|f| for some f. Making
use of the localised error estimate it is possible to improve this to
ILf=sll, o < ChP+"/? | f|,. The exact details of this can be found in Duchon
[3], or the later work of Light and Wayne [9]. To obtain these improved
results we must first derive the local error estimate (3). In order to do this
we need two ingredients.

First, we need to explain what we mean by the local seminorm |-|,.
Recall that our seminorm is defined in terms of the Fourier transform of
the function. Thus there is currently no natural way of defining the local
seminorm. What is needed is a direct version of the seminorm, defined in
terms of the function itself, and not its Fourier transform. The recent paper
of Levesley and Light [8] concerned itself with this task. They were able to
prove, again with certain assumptions on the weight function v, that for all
feX(R),

[ 1D @I o) e =3[ [ #e=3) (D))= (D*f ()P e dy.
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Now we can simply define our local seminorm by

1/2
flo =< Y | [ wlr=) D) @)= (D)) dx dy) :
bj=k 722

where w = —1 4.

The second requirement for the development of the localised version of
the error estimate is having certain extension operators to hand. Duchon
worked in a Sobolev space setting where the relevant extension theorems
were already well known. The development of the required extension
operators for the above seminorm is the aim of our current research. The
reader may have noticed the resemblance of the direct seminorm to that
used in non-integer-valued Sobolev spaces. The extension theorems for
these spaces serve as a guide to the development of our theory, although at
the level of generality considered in this paper, significant new techniques
are needed. We begin by working with some spaces of continuous func-
tions. For ke Z,, let C§(R") be the set of all compactly supported func-
tions on R” which have continuous derivatives up to the kth order. As
usual CF(R") will denote (-, CK(R"). Let 2 be an open subset of R”".
The space of functions we shall initially be interested in is X(Q)=
{glo: g€ CE(R") and |g|, < c0}. Similarly we define X(R") = {f € C§(R"):
| flg» < c0}. Now, under appropriate hypotheses on w, |-|, defines a semi-
norm on X (£2). It will be of use to define a norm on X (£2) as follows:

1/2
I/l = < S [ 1D ol dx+ Iflé) :
le] <k V£

The norm |- |g» on X (R”) is defined similarly. We develop a linear exten-
sion operator from X () to X(R"), subject to Q and the weight function w
satisfying certain properties which are detailed later. Using this result we
deduce the existence of extensions for functions in Z(£2), the completion of
X () with respect to the norm |- ||p. Outlined below is our principal result,
the proof of which is again dependent on a suitable choice of £2 and w.

THEOREM 1.1. Given f € #(Q), there exists a function f, e Z(R") such
that

D) flo=f
2) |f.lgr < M |f|g for some constant M independent of f.

We now give a demonstration of how these extension theorems can be
used in the development of improved error estimates. The example is
chosen because it needs no detailed understanding of the power function 2.
Let X(22) be a space of functions on £ with seminorm |-|,. Suppose
Xy, ..., X, lie in 2 < R". Take f e X(2) and let s, be the minimal norm
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interpolant to f on xi, ..., x,,. Suppose we can find f, € X(R") such that
folo = flo and |f.|g» < C |f]|, for some constant C independent of f. Let
s;, be the minimal norm interpolant to f, on x,, ..., x,,. The usual error
estimate takes the form

[fe() =57, () S P(x, X1 s X)) |fe =5, |

Now s, is the minimal norm interpolant to f, and so

e =3 o = felir sy, I

<|fele

Hence,

[fe(¥) =5, () S P(x, X1, -os X) | felwe

<
< Cg(xa X1y eens xm) Ifl!)

Since x, ..., x,, lie in  we have s, = s, . Therefore, the previous inequality
can be written as

lfe(x) =5,(x)| S CP(x, X1, ..., %) | flo-

Then for all x € 2 we have

If () =5, S P(x, x4 ... %) C | Sl

This paper has in our view two significant omissions. First, we do not go
on from establishing the extension in Theorem 1.1 to the application we
have indicated—that of obtaining improved error estimates. The arguments
needed for these results are not trivial, and reasons of space ruled them out
of this paper. Second, we have to make some mention of other work in this
area. Extension theorems already exist in the work of Schaback [16] and
Iske [6]. These papers also contain alternative versions of the space X (Q2)
to that given by Levesley and Light [8]. At the time of writing, we have
established that these alternative definitions of X() produce different
spaces for certain choices of Q. To be more precise, we have constructed
an example of a domain Q with an exponential cusp in its boundary for
which the space constructed by Iske is smaller than the corresponding
Levesley-Light space. Both Schaback and Iske produce an extension
operator which is an isometry. Our extension is never an isometry, so again
there is a fundamental difference. Finally, as we point out in Section 4, our
theory includes the standard Sobolev theory as a special case. At the time
of writing, we are unable to be more authoritative than this, but are
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currently exploring thoroughly the connections and distinctions between
our work and that of Schaback and his co-authors.

We need to introduce some terminology, which will be adhered to
throughout the paper. The space S is the space of rapidly decreasing func-
tions endowed with the usual topology (Rudin [14]). For f € S the Fourier
transform of f is defined by

f(x)

1 ‘
=(2n—)”/2£r«" f(»e™dy, xeR"

The space L}, (R") is made up of all measurable functions f: R" — C such
that for any compact set K in R", f|x € L'(K). The space of all polyno-
mials of total degree at most k will be denoted by II,. For ye Z",, the
operator D? is the usual (distributional) partial derivative of order 7.
Finally, we have already in this Section overworked the notation |-|.
Sometimes this notation is used for a seminorm, and sometimes for the
Euclidean norm of a point in R or R”. We believe that the intention is
always clear from the context and that this economy of notation is more
helpful than confusing.

2. AN EXTENSION ON R’

Our first extension is from R’ to the whole of R". By R’}, we mean the
set of all points in R"” whose last coordinate is positive. Because of our
focus on the last coordinate, it will help to write a point x € R” in the form
x=(x, x,), where x' € R""! and x, € R. Then R’ = {(x, x,): x, > 0}. For
keZ,, we define YX(R’) = {glw: : g € C5(R")}.

DerFINITION 2.1. Let ke Z,. Define 4,, ..., 4., to be the unique solu-
tion of the system

k+1 1\
Y /1j<——.> =1, 1=0,1,.., k.
j=1 J

For each f: R}, —» R and each a = (ay, ..., «,) € Z"}, define E, f: R" > R by

f(x', x,), if x,>0

Eonf(x,a xn) = k4l 1 lan]
Y A <——_> f(x, —x,/7), otherwise.
j=1 J

THEOREM 2.2. Let 0 =(0,...,0) and let f € YXR?), for some ke Z,.
Then E, f € C§(R") and D*E, f = E,D*f for all w. € Z". with |o| < k.
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Proof. Let feYXR"). Suppose x=(x,x,)eR", with x,<0, and
o= (ay,...,a,) € Z" with |a| < k. Then

k+1 1 ot
D°E, f(x', x,) = Z 4 <—;> D*f(x', —x,/j) = E.D°f(x', x,).

The relation D*E, f(x) = E,D*f(x) for x = (x', x,,) with x, > 0 is clear and
so the formula D*E, f = E,D"f is established for all f € Y*(R"). Now it is
clear that if ge Y°(R"), then E,ge C,(R"). From this we deduce that
E, feC5(R". 1

We now introduce a weight function w: R” —» R which is a measurable
function with the properties

7'1) j 4+ w> 0 whenever 4 has positive measure;

(#°2) there exists a constant M > 0 such that if x = (x', x,) € R” and
y=(x, y,) e R" with |x,| = |y,| then w(x) < Mw(y).

‘We note that the results in this section require only that w satisfy (#72) and
w(x) = 0 for almost all x € R". However, we make the stronger assumption
(#°1) as this will be required in Sections 3 and 4.

Now take a € Z”, and suppose f € Y"(R”). We define

1/2
s =< [ ], we=» |D“f(x)—D“f(y)|2dxdy> :

Note that |f], g» is an extended real-valued number. We denote by X*(R’.)
the set of all f e Y"(R") which satisfy |f], z» <co. The quantity |f], g
and the corresponding set X *(R") are similarly defined.

THEOREM 2.3. There exists a linear operator E: X*(R") - X*(R") such
that

(i) forall fe X*(R})andxe R}, Ef(x)= f(x).
(ii) there exists a constant A >0 such that |Ef|, g < A |fl,r: for all
f e XX(RY).

Proof. Our claim is that a suitable choice for E is the one we have
already defined prior to the theorem, E = E,, providing |«| < k. It follows
immediately from the construction of E that Ef(x)= f(x) for all xe R,
and all f e X*(R}).

Let f € X*(R’.). We consider

B w =] | wx=y) IDEf(x)=D'Ef(y)] dxdy.
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It will be convenient to define the measurable function z by

z(x, y) =w(x—y) |[D*Ef(x)—D*Ef(y)I’,

for almost all x, y e R". Furthermore, we let y, , be the characteristic
function of R x R”, y._ be the characteristic function of R’ x (R*"\ R?%),
and similarly for y_, and y__. Then

|Ef|azc, R" =I++ +I+_ +I_+ +1 _
where, for example,

L= [ .Gy zxy) dxdy.
R" /R

Now

T I jio WX =y, Xy = V)

k+1 Jota] 2
<z A (—-.) Df(x, —xn/j)>—D“f(y',y,,) dx, dx' dy, dy'

Recall that since |a,| < k we have 352} 1,(—1/j)"! = 1. Using this fact and
an application of the Cauchy—Schwarz 1nequa11ty gives

2

k+1 ot |
(Z j‘ < > Daf(xla _xn/j)>_D“f(yl’ yn)

k+1

el ?
Z }4 <—;> (D“f(x’, —x,,/j)—D“f(J/, yn))

(ER()

i=1
Let 4, =X %11 |4* (=5 Then

><Z ID*f(x', =x,/ ) =D (¥, yn)I2>

k+1

I, <A4, Z fW 1 f: fRH fiﬂ w(x' =y, %, = y,)

|D f(x s _xn/j)_Daf(y,9 yn)|2 dxn dx’' dyn dy’
Making the substitution x, = —js, in the appropriate integral gives

k+1

< A4, Z Jf B lfow fRH f:o w(X' =y, =Sy = Vn)

|D“f(x s sn)_Daf(y,a yn)lzdsn dx’ dyn dy,
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Since j, s,, and y, only take positive values,
|_jsn_yn| = |jsn+yn| =jsn +yn >Sn +yn = |Sn _ynl

Hence by (#72), we can find a number 4, > 0 such that

k+1

If+ < A2 jgl jJ‘R"—l J;) fR"—l J‘O W(X —-Y, sn_yn)
|Duf(x,9 Sn)_Daf(yla yn)|2 dSn dx’' dyn dy/

Letting A, = 4, 51} j we obtain

Lo<A[ | wee=y) D f()=D*f(p)dxdy.

An almost identical argument furnishes the existence of a constant 4, such
that

Lo <A [ wex=y) D/ ()=D*f ()] dx dy.

Now by reasoning very similar to above, we deduce the existence of 45 >0
such that

R

k+1 1\l 2
Z z‘]<_;> (D“f(x,s _xn/j)_Daf(yla _yn/])) dxn dxl dyn dy,
i=1

k+1

0 0
< r_ _
= AS jgl J‘R'ﬁl J‘—oo J‘an f—oo W(x y B xn yn)
|Duf(x,s —xn/j)_Daf(J/, _yn/J)lz dxn dx’' dyn dy,
The change of variables x, = —js, and y, = —jt, gives

k+1

<4y 7|
j=1

R

- J;) IRH*I fO w(xl _y,9 jtn _jsn)
|D“f(x,a sn) _Daf(yls tn)lz dsn dx’' dtn dy/
Again, since s,, t,, and j take only positive values, we have

|]tn _j‘Snl =.] |‘Sn_tn| = |Sn _tn|9
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and so an application of (#72) furnishes a constant 4 such that
L_<ds[ [ w=y,s,—1) IDf(,5)=Df(¥, t,)* ds, dx' di, dy'
R, JRY

Finally, using

|Ef|§, R" =444 +I+7 +I,+ +1__

SUH i+, +4) [ | wx=p) D () =D ()] dxdy,

we obtain |Ef|, g </1+ 45+ A4+ A4g | florr- 1

The essential ingredient from Definition 2.1 and Theorem 2.2 is the
operator E,, which we will henceforward abbreviate to E. We end this
section with some results that will be of use later.

LemMa 2.4. Let 0=(0,...,0)eZ". Let ke Z,, and let a € Z’, satisfy
lo| < k. Given f € X%(R",) let Ef = E, f be as defined in Theorem 2.2. Then

jRn |D*Ef(x)|>dx<C L«" |D*f(x)|* dx

for some constant C independent of f.

Proof. We can write
[ IDEf(o)? dx
.
=|  IDEfGoPdx+[ IDEf(x)]dx
R’ R"\ R’

2
dx, dx'.

- Lﬂ |D*f(x)|? dx+fRn71 ﬁo

k+1 1\l
X% <—;) DS (¥, =x,/])

We consider the second integral. Let

r=[, T

An application of the Cauchy—Schwarz inequality gives

1 Jotn|
4(=5)

2
dx, dx'.

J

k+1 ot
4 (1) e

k+1

< (3

2 k+1
> < ; 1D f (X', =,/ j)|2> dx, dx'.



EXTENSION THEOREMS 175

k+1
j=1

Letting ¢; = |A,(—1/j)™!|* and making the change of variables x, =

—s, j, we have

k+1

I< j “ D F (X, 5,)|? ds, dx'.
& 3 d [ [y D)1 ds, d
Letting ¢, = ¢, Y%} j, we have
1<c2fn |D*f(x)|? dx.
R+
Hence,
[ IDEfPdx<| Do dx+e, [ 1D dx
R" R’ R,
=(+e) | 1D dx. 1
DErFINITION 2.5. Take k€ Z, and let f € Y*(R"). We define

Il = %, cl/lm+ X [ 1D (P dx,

oneZ'jr an'jr
Jo =k lol <k

where the ¢, are constants. Let || - ||z be similarly defined.

THEOREM 2.6. Let 0= (0,...,0)eZ". For f € (\y=r X“(R}), let Ef =
E, f be as defined in Theorem 2.2. Then for some constant M independent of f

1EfNler < M || f llwz -

Proof. The result follows from Theorem 2.3 and Lemma 2.4. ||

3. SOME PREPARATORY RESULTS

To obtain a more general extension theorem needs a lot of preparation.
The informed reader will be able to see that at a very coarse level, our
overall strategy of proof follows that used in the Sobolev extension
theorems. However, at least at the level of detail contained in this section,
things are very different. Here we have gathered together many of the
technical tools necessary for our more general result. Only one of
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these seems interesting in its own right, and it has been dignified as
Theorem 3.13.

Throughout this section we will refer to the concept of a domain in R”;
that is, an open subset of R”". Take k€ Z, and suppose 2 is a domain in
R". Let f € C*). Then,

1/2
Iflg=(2 e[ [ we—y) ID“f(x)—D“f(y)Izdxdy> NG

lof =k

where the constants ¢, are defined by the algebraic identity

Y e, x™=|x|*  forall xeR"
ol =

As in Section 2, |-|, is an extended, real number and we denote by X ()
the set of all f restricted to Q such that f e C{(R") and |f|, < . The
function w is always assumed to be measurable, and often required to
satisfy further properties. These properties will always be enough to
guarantee that on X(Q), |-|, defines a seminorm with kernel consisting of
the polynomials of degree at most k. There is therefore the possibility of
constructing a norm from this seminorm. If Q is a bounded domain and
f e X(Q), then

1/2
la=( 3 [ 1R dx+1r13 ) ®)

| <k

is our preferred choice.

DrerFintTION 3.1, Let 2, and 2, be domains in R”, and & a bijection
from Q, to Q,. We say that @ is k-smooth if, writing @(x)=

(¢1('x1’ “eey xn): [ERE] ¢n(xls LR xn)) and ¢_1(x) = W(x) = (lpl(xla “eey xn): LR
Ya(xy, -, X,,)), then the functions ¢, ..., ¢, belong to CHQ)) and ¥, ..., ¥,
belong to C¥(2,). If k = 0 then we will refer to @ as smooth.

DerINiTION 3.2, Let @ be a bijection from R” to R”. We say @ is locally
k-smooth if @ is k-smooth on every bounded domain in R”.

As we have already indicated, assumptions on w are often needed. We
gather together all the required hypotheses here:
(W1) we L'(R*"\N) for any neighbourhood N of the origin;
W2) w(y)=0(]y|*) as y —» 0, where n+s+2 > 0;
(W3) j 4+ w> 0 whenever 4 has positive measure;
(W4) w(y)=w(—y) forall y e R",
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(W5S) for every locally (k+1)-smooth map ¢ on R", and every
bounded subset Q of R” there is a K >0 such that w(d(x)—¢(y)) <
Kw(x—y), forall x, y € Q;

(W6) there exists a constant M > 0 such that if x = (x’, x,) € R” and
y=(x', y,) € R" with |x,| > |y,|, then w(x) < Mw(y).

LemMmA 3.3. Let w: R*" > R be a measurable function satisfying (W1)—
(W3). Then the mapping y — |y|> w( ) for y € R" is in L}, (R").

Proof. Choose 6 >0 and set N={yeR":|y|<d}. Then there exists
A > 0 such that [w(y)| < 4 |y|* for all y e N. Since w e L'(R"\ N), it is clear
that the mapping y s |y|*>w(y) for ye R" is in L} (R"\N). It suffices
to show that this same mapping is in L'(N). For some appropriate
constant B,

J
[ Pwoydy<a| ivrdy<aB[ rotdr <o |
N N 0

LemMA 3.4. Let Q be an open, bounded subset of R". Let w: R" - R be a
measurable function satisfying (W1)—(W4). There exists A > 0 such that for
each f e C{(R),

[ we=n1fe—solPdxdy<a 3 [ 1D () dx.

o] =1

Proof. Since feCY(Q), Taylor’s formula with integral remainder
[5, p. 13] allows us to write

f) =) = U PRCR IS ) di|

<<JO 1dz><f01 2dt>

<[ (M (T 100 D= ) .

lo| =1

Y. (y=x)"D*f(x+H(y—x))

o =1

Now, let y,, be the characteristic function of the set (2. Extend each D*f to
a function on R” by setting it to be zero outside 2. Two applications of
Fubini’s theorem plus the change of variables y = z+ x gives
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[, ], W= 1= £ dxdy

<n 3 [ [ we=) [ =) D G+ oy )P dr dy dx

lof =1
=¥ [ 1] wee=9) 20 () 2a(2)

|(y—x)* D*f(x+t(y—x))|* dy dx dt

=n ) fol fRn IR,, W(2) 1a(X) ga(x+2) |2°2 |D*f (x+12)|* dz dx dt

e =1
1
=ny j f w(z) |z j ID*f (x+12)|? 10(%) xo(x+2) dx dz dt.
lf=1 "0 R” Qn(R-2)

Since Q is bounded, we can find ¢ > 0 such that if |z| > J then Q N (2—2)
is empty. Let B; = {y € R": |y| < J}. Then the change of variables x+ 7z = v
gives

[, [ W= @ —f O dxdy

<n'Y jlj w(2) |2 | ID*f(x+12)|? 30(x) yo(x+2) dx dz dt
0 JB; Qn(R-2)

] =1

—ny fol L& W@ 12 [ 20(v—12) 2o(0+(1=1) 2) ID*f (0)|* dv dz di

lof =1

<n'y jol L w(z) |z jw ID*f(v)|? dv dz dt

lo| =1
<n 3 [ W@ [ 1D OF dodz,

since (D*f)(v) =0 for v ¢ 2. Now by Lemma 3.3, there is a constant 4 >0
independent of f such that

[, W=/ dxdy<an 3, | 1D/ @) do. 1

o =1

LemmaA 3.5. Let U, H,G be measurable subsets of R" satisfying the
following properties:

(1) H is a bounded set and U c H < G;

(2) there exists a >0 such that for all xe G\H and yeU,
[x—y|>4.
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Let w: R” - R be a measurable function satisfying (W1). Then there exists
a constant K such that for all y e U,

<K.

JG\H w(x—y)dx

Proof. Define f:U - R by f(y) = jG\H w(x—y) dx for y e U. Making
the change of variables x = s+ y gives

F =] (s ds,

where T, =G\ H —y. Take seT,. Then s=x—y for some xe G\ H and
so by Condition (2), |[x—y|>d. Now take N ={seR":|s|<J}. Then
T, =« R"\N and

FOI=|[, v ds

< j Iw(s)| ds < f [w(s)| ds.
T, R"\N
Setting K = [gn » [W(s)| ds gives the result. ||

LemMa 3.6. Let H be a bounded subset of R". Let U be a subset of
H such that H\U has positive measure. Let w: R" — R be a measurable
Sfunction satisfying (W1) and (W3). Then there is a number K > 0 such that

f wx—y)dx=K, forall yeU.
H\U

Proof. Define f from R” to the extended reals by

fG =], W=y dx=| wis)ds,

where T,=H\U—y and yeR" Because T, has positive measure,
f(y)>0 for all y e R". We claim f is a lower semicontinuous function on
R". That is, the set ¥, = {y € R": f(») > a} is open for each a € R. Clearly
if @ <0 then Y, is the whole of R"” and so is open. Thus we fix a > 0. We
will show that the set Y = {yeR: f(y) <a} is closed. Let {v;}7, be a
sequence in Y¢. Then

f(vj)zL w(x)dx<a, forall j=0,1,...
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For convenience we shall write 7; for T;, . Suppose that lim;_,,, v; =v. We
wish to show that veY{. Let N be any neighbourhood of the origin. We
define A=T, " N and 4; =T, n N. Since w € L'(R"\ N) we have

j w(x) dx = lim w(x) dx < o (6)

T,\4 jo o IT\ 4

Let B(0,1/m)={xeR":|x| <1/m} and define L, =T, n B(0, 1/m). Let
Zm be the characteristic function of L,. Consider the sequence {w,}7_,
defined by w, = (1 —y,) w. Now, for all x e R”,

1) 0wy (x)<sw(x)<...
(i) lim,_ , wi(x) = w(x).

Note that in order to ensure Condition (ii) for x =0, we need to define
w(0) = 0. Now, the Lebesgue Monotone Convergence Theorem and Eq. (6)
give

j w(x)dx = lim j (1= ) (x) w(x) dx = lim j w(x) dx < o
T, k—>oo JT, k—o JT,\L

Therefore, v e Y and Y, is closed. Hence, f is lower semicontinuous. Since
U < H and H is bounded, U lies in some closed ball, centred on the origin.
Now f attains its (positive) infimum on this ball, and so the required
conclusion follows. ||

The following result, which for a long time we referred to as the “secret
lemma,” seems to us to be absolutely crucial in all extensions theorems of
this nature. It tells us that under appropriate circumstances, contributions
of integrals over sets of the form Gx(G\H) can be in some sense
disregarded.

Lemma 3.7. Let Uc Hc G be measurable subsets of R", with H
bounded. Suppose that for some 6 >0, |x—y|> 06 forall xe G\H and y e U.
Suppose w: R" > R is a measurable function satisfying (W1), (W3) and (W4).
Let X consist of all functions [ € C(G) for which the mapping F: G X G — R
given by F(x,y)=w(x—)|f(x)—f(»)|* for x,yeR" is in LY(GxG).
There is a number K such that

JG _[G F(x,y)dxdy SKJ‘H _[H F(x, y)dxdy,

for all f € X with support in U.
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Proof. Because F € L'(G x G), and f is supported on U we can write

F(x,y)dxdy=2 F(x,y)dxdy+ F(x,y)dxdy
GYJG U JG\U U JUu
= ZL fG\H F(x, y)dx dy+2fU IH\U F(x,y)dxdy
+L Lj F(x,y)dxdy

= ZLJ fG\H F(x,y)dx dy+fH IH F(x,y)dxdy.

Now, again using the facts that F € L'(Gx G), and f is supported in U,

[ [ Feoyydxdy=[ IfGIF]  wx—y)dxdy.
U JG\H U G\H
Lemmas 3.5 and 3.6 show that there exists constants K, K, > 0 such that
K
j w(x—y) dx<K1<—1J w(x—y) dx.
G\H K, Jo\v
Since f is supported on U, we conclude that

Jy Jory FCo 9 dxdy< % J, SOP[ we—y) dxdy

= %L} L{\U F(x,y)dxdy.

Finally,

2

L; '[G F(x,y)dxdy S%IU IH\U F(x, y)dx dy—l—LI IH F(x,y)dxdy

K,
< (EH)L jH F(x,y)dxdy. 1|

Our extension theorem for more general domains depends on an under-
standing of k-smooth mappings. The following four Lemmas, culminating
in Theorem 3.13, establish the necessary results in this area.

LemMma 3.8. Let Q,, Q, be domains in R" and ¢ a k-smooth bijection
from Q, to Q,. For each f € CX(Q,) and o € 7", with |o| <k,

Di(fod)= 3 Pyl(D’f)o¢], @)

0<|BI< ol
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where each P,z is a polynomial of degree at most |B| in derivatives of the
components of ¢ of orders at most |u.

Proof. The proof is by induction on |«|. If o =0, then the result holds
with Py, =1. Now assume Equation (7) holds for all a € Z" with || <
m < k. Take a € Z", with || =m. Then a = f+7y where |f| <m and |y|=1.
Now employing the induction hypothesis,

D(f o )= DDA [ o §)
=m< » &mmnom>

o<p<m—1

= Y ((D'PR)[(D'f) o 1+ P, D'[(D'f) o $1).

o <m—1

The induction hypothesis can now be employed again on part of the second
term in the parentheses above giving

D'[(D'f)edl= 3 P,L(D""f)o¢]

o<y <1

=Py[(D"f) o ¢1+ 3, P,L(D"f)04].

el =1

Thus,

Di(fod)= Y  (D'Py+PyPo)(Df)o¢]

o< <m—1

+ ) PﬂvllZley[(D”+vf)°¢]

o <sm—1

= Y (D'Py+PuP)(D'f) o]

o<y <m—1

+ %: <§ Pﬂo‘Py,u>[(va)°¢]~
0=0

We can therefore write

D(fod)= Y P,JIDf)o4],

osphl<m
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where
DyPﬂO—i_PﬂOPyOS v=0
D'Py+BpPut ¥ PPy 1<hl<m-1
ut
P, = =
Z PﬂéPy/v |v| =m.
p+o=v
] =1

The result now follows by induction. |

LemMma 3.9. Let ¢ be a k-smooth bijection between bounded domains Q,
and 2, in R". There exists a constant K such that for all « € Z", with |o| <k
and for all € CH(£,),

Jo, 1P°Cf 2 DY dx <K max [ (D"f)(0)) dx.

Bl <o

Proof. Take feCHK,) and a € Z" with |«| <k. Then, using Lemma
3.8 and the Cauchy-Schwarz inequality,

[, 1D o )P dx

B lﬁ|z| | Py (x)[(DPf) o ¢1(x) dx
< I <|ﬁlzll 1><|ﬁ|2| || P L) e ¢](X)|2>dx

<<Wzlll> max [ [P, (o) [[(D") o $1(0)I dx

1Bl < |l

1< e

<z 1) max (max 1,00 | 002 g0 d )

Now suppose the maximum above over || < || occurs at f = f,. Since 2,
is a bounded domain, we can assume that there is a number K, such that

<Z 1>2max| 50 (> < K.

1BI< el xeq
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Making the change of variables x = ¢ ~'( y), we obtain
[ 1D e P dx <Ky [ (DRGNP dx

<K [ 10PN g ()] dy,

where J;-1 is the corresponding Jacobian. Since £, is bounded, this
Jacobian is bounded on ,, and so there is a number K,, such that

Jo, 1P°Cf 2 D dx <K Ky [ [(DRf)0F dx
as required. ||

LemMmA 3.10. Let ¢ be a (k+1)-smooth bijection between bounded
domains Q, and Q, in R". Let o, p € 7" with ||, |p| < k. Let Py be as in
Lemma 3.8. Let w be a measurable function satisfying (W1)—-(W3). Then
there exists a constant K such that

[, W= Py = Py(»IPdx <K,

forallye Q,.

Proof. Recall from Lemma 3.8, that P,; is a polynomial of degree at
most |f] in derivatives of the components of ¢ of orders at most |«|. Let
P(x) = (¢1(x1, --s X,)5 -0 $u (X1, -, X,,)). Because ¢ is (k+1)-smooth, the

functions ¢,, ..., ¢, are in C**'(Q,). Hence, we can find a constant K, such
that forall 1 <i<n,

(D7) (x) — (D"$) (M| < K [x—yl,

for all x, y € 2, and for all y € Z", with |y| < k. Consequently, we can find a
constant K, such that |P,;(x) — P,(y)| < K, |[x—y| for all x, y € 2, and for
all a, f € Z', with |«|, | f] < k. Hence,

[, W) [Py =Py dx < K3 [ Ix—p* wlx—y) d.

Using the change of variables x — y = s we have

Jo, W= 1P () =PI dx < K3 |

5|2 w(s) ds.
21—y
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Lemma 3.3 establishes the existence of a constant K;( ) > 0 such that

[ W=2) 1Ps(x) = Py ()] dx < K3K3(3).

Again by Lemma 3.3, the map s+ |s|> w(s) is in L, (R"). Therefore, the
function y— jgl_ , Isl> w(s) ds is continuous. Since €, is bounded, it
follows that sup,., K;(y) <oo. Thus the required result is obtained by
taking
K=K;sup K;(y). |
ye

In the following result we will make use of the following simple inequal-

ity. Foralla, b e R/,

la+b|* < lal*+2 |al b]+15]* < 3(lal*+ [5]*). ®

Lemma 3.11. Let ¢ be a (k+1)-smooth bijection between bounded

domains Q, and Q, in R". Let w be a measurable function satisfying
(W1)~(W3) and (W5). There exists a constant K such that for all f € C¥(Q,)
and all a € 7', with |o| < k,

[ ] W= 1D e ) =D(S o Py dxdy

< K max L) L) w(x =) (D))= (D' f)(p)I* dx dy

+Kmaxf [(DP£)(x)|? dx.
BI<lo Y2,

Proof. Take f e CK,) and a € Z” such that |«| < k. Observe first that
by Lemma 3.8, the Cauchy-Schwarz inequality and the remark preceding
this lemma,

ID*(f © $)(x)—D*(f o (P
Y. (Py(x)(D’f o $)(x) = Pyy(»)(D’f o $)(1))

1Bl < el

< ( » 1) ( S Py (x)(DPS o $)(x)— Py 3)(DPS o ¢>(y)|2>
181 < o

181 < e

2

<3< » 1)( T 1Py [(DPF o )(x)—(DPf o B

1Bl <ol 1Bl < lal

+ % I(D”fo¢)(y)|2IPa,s(X)—Pw(y)I2>.

1B < el
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Put K, =33 5<y 1. Then
[ | we=») D1 e ) =D o P)(y)I dxdy
<Ki 3| [, vEm DB (D' o )= (D'F 2 DI dxdy

+Ky 5[ IO e I [ =) 1Py (0= Py dxdy.

We examine each of the above integrals in turn. First, since £, is bounded
we can assume that |P,;(x)|> < K, for all |f] <|«| and for all x € ,. Thus,
making the changes of variables x = ¢ ~'(s) and y = ¢ '(¢),

Jo, [, w2 B4 OP [(DPS o $)0) = (DPF o () dx dy
<K, L)l L)l w(x—y) |(D/3f ° ¢)(x)_(Dﬂf ° ¢)(y)|2 dx dy

<K [ | w07 ©=97 ) 06O DIN0P
|Jy-1(s) J4-1(2)| ds dt.

Using hypothesis (W5) and the fact that |J,-1| is bounded on the domain
Q,, we infer the existence of a constant K such that

J,, [, =) B4R (DPS o $)00) = (DPS o ()N dv dy
<K [ | ws=010" )6~ @0 )0 dsar
Moreover, by Lemma 3.10 there is a constant K, > K, such that
J,, 1021 e B [ w(x=1) 1Py () = By (DI dx dy
<K [, DS o 4101 dx

< K, max j I(DEF)(x)|? dx.
1Bl < o V€2,
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The last inequality is a consequence of Lemma 3.9. Assuming (with no loss
of generality) that K > K,

Lzl Lzl w(x =) ID*(f o $)(x)=D*(f o $)(»)I* dx dy

<KKa B[ [ wls—0) [(D2)6) = (D)0 ds dr

1< e

+KK; Y max [ |[(DPf)(0) dx
1BI< e 1BI< Il 2

<k 3 1)(max [ [ ws=0 1@ 06 -0 )0 dsd
18I <ol 2

1< el

+max j |(Dﬂf)(x)|2dx>.
1Bl <ol Y2,
Taking K = K, K5 35 <}y 1 completes the proof. [i

We now come to one of the central results of this section. To understand
it, we introduce a further piece of notation.

DeFINITION 3.12. Let 2 be a domain in R” and feCHQ). Let
w: R" - R be a measurable function satisfying (W1)-(W6). Set

11l =( T [, 0P ds

/2
+ 3 e[ [ we=n 10 )@ N dxdy) .

lo = &

The symbol |- ||, is not used inadvisedly here, since it defines a norm on
X () as introduced at the start of this section.

THEOREM 3.13. Let ¢ be a (k+1)-smooth bijection from a bounded
domain €2, into R". Let w:R"—> R be a measurable function satisfying
(W1)~(W6). Then there is a number K such that

If o blla, < K I fllgay,  forall  feX($(£2:)).

Proof. Set Q,=¢(2,). From Lemmas 3.9 and 3.11 we infer the
existence of a constant K; > 0 such that
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If o dlla, = 3 [ IDCf o I dx

o] <k

+ 3 el [ W=y DS 0 ) =D(S o H() dxdy

o =k

<Kymax [ | w(x—y)|Df(x)=D*f(p)|*dxdy

1Bl <k

+ K, max j ID?£(x)|? dx.
2

1BI<k

From Lemma 3.4 we infer the existence of a constant K, > 0 such that

If oo, < (K. 3 [ 107G dx

<k

3 e [, w0 D0 - DR dxdy )

=k

+K,; maxj |Dff(x)|* dx
2

1Bl <k

< Ki(K;+2) [ £, »

as required. ||

Lemma 3.14. Let ue Cy3(R") and let Q be a bounded domain. Let
w: R* > R satisfy (W1)-(W4). There exists a constant C such that for all
yeZ’, with|y|=k,

[ [ wGe=) ID7(uf )0) = DX(uf NI dx dy < C £

forall f e X(Q).
Proof. Let

Li=[ [ wir=y) 1D )(0) = D(af Y d dy.

The Leibniz formula allows us to write

Df)= 3, G0 D),

ez

1BI< Iyl
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where the C,; are suitable numbers. Using this and the Cauchy—Schwarz
inequality gives

Y Cupl(DPu)(x)(DPf)(x)

1Bl <

L= [ we—y)

— (D" ") () (D))} dxdy

<( 2 16:P)[, [, w0 ( T 10wt

181 <yl 1B1< Iyl
- (DHu)(y)(Dﬁf)(y)P) dx dy.

Now set ¢, =Y 5 < |C,41>- Then using inequality (8) we obtain

h<da 3 || W) 1D UGl D ()= DA f (1) dx dy

+3a 3| ], W IDSOI D7 ux) =D ()P dxdy.

Now set

¢, = max sup |D*Pu(x)|*
BI<Iy| xeQ

Lemma 3.4 shows that there is a constant ¢; such that

I, <3e¢,6, I/i’lzl | L) L) w(x—y) |D*f(x)—D*f(y)|> dx dy

+3a 3| ] wemp) DG ID7uC) D7 Pu( ) dx dy

<3ae 3 || W=D =D (») dx dy

+3ci065 ). j|Dﬂf(y)|2dy

1<|pl<k ¥ @

+3e 3, fg IDPf()I? L) w(x—y) |D?~Pu(x) — D"~ Pu(y)|* dx dy.

1BI< Iyl

If we can now show that for each y € Q and every a € Z”, with |a| <k,

L(y) = | wlx=y) ID*u(x) = D'u(y)P dx
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is bounded by a constant ¢, dependent only on u and «, then we will obtain

hi<3ac 2 [, [ wee=») IDAf )=~ DA S (I d dy

t3ace ¥ [ IDPF(Pdy

1<|fi<k

+3ae Y [ DA dy.

BI<W *2

This completes the proof. For the boundedness of I,, we note that since
u e C7(R"), there exists a constant ¢s(a) dependent on a, such that

|D*u(x) = D*u(y)| < es() [x—yl,

for all x, y € R". Using the change of variables x — y = s, we obtain
L(y) <es(@) | wx—y) =yl dx

=cs5() j w(s) |s|? ds.
Q-y
Lemma 3.3 now establishes the boundedness of I, on 2. ||

LemMa 3.15. Let Q2 be a bounded, open subset of R". Let w: R" > R be a
measurable function satisfying (W1)—-(W4). Let ue Cy(R"). Then there is a
number C > 0 such that |uf|o < C || fllo for all f € X(Q).

Proof. Let f € X(£2). An application of Lemma 3.14 shows that

lufle= 3 e | | wr=p) 1D/ )x)=D*(uf N y)I dx dy

lod =k

+ 3 | I d

o] <&
<X aalflot 3 [ 100 d ©)

for some ¢; independent of f. The Leibniz formula guarantees the existence
of constants c,; such that

D(uf)= Y. cuy(D*Pu)(D'f).

1BI< el
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Hence, for any a € Z”, with |«| =k, an application of the Cauchy—Schwarz
inequality gives

L |D*(uf )(x)|? dx = f Y ¢y D*Pu(x) DPf(x) " dx

21181 < |

<( T leaP)[, T 1Dt hu D
181 <ol 2 1p<ld
Setting

;=Y lel> max sup [D*Pu(x)|?
1B < | BI<le| xeQ

gives
Jo PN dx<e 3 [ DR de<e Il

Substituting this result back in (9) gives

luflle < Z cer lfle+ Y e lflle

o <k

which is the required result providing we take

Y oo+ Y o

lof =k lof <k

4. EXTENSION THEOREMS FOR MORE GENERAL DOMAINS

This section contains the main achievement of our work-extension
theorems for domains considerably more general than R’,. We begin by
describing the set of admissible domains. Let B = {(y,, y5, ..., y,) € R":
ly;l <1, 1<j<n}, and set

B, ={yeB:y=(),y,) and y,>0}
and
B,={yeB:y=(y,y, and y,=0}.

Here we continue to utilise the notation established in Section 2. In
particular & is a fixed natural number throughout this section.
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DEerINITION 4.1. A bounded, open set Q in R” with boundary 092 will
be called a V-domain if the following hold:

(V1) There exist open sets Gy, ..., Gy = R” such that 0Q2 < (J j.":l G

(V2) There exist locally (k+ 1)-smooth maps ¢;: R” — R”" such that
¢;(B)=G,;, ¢;(B,)=G N, and ¢,(B)) =G, N0, j=1,...N

(V3) Let 2; be the set of all points in  whose distance from 0% is
less than . Then for some 6 > 0,

N 1 '
2e U b ({0nmrern<iq 1 <i<n})
j=1

We continue to use the notations |- |, and ||- ||, as defined in Egs. (4) and
(5), as well as the space X(£2). We now embark on the construction which
will define our extension. So we presume £2 is a V-domain. We will define a
linear extension operator L: X (2) - X(R"). Let

1
= R*: |y <——1<j< .
Q {(ylayZJ ayn)e Iy]|<k+17 J n}
Now set V;=¢,(Q), i=1,...,N. By virtue of (V3) for some J>0,
Vi, ..., Vy form an open cover of Q;. Consequently, we can find an open set
V, such that dist(x, 9Q2) > ¢ for all x e V;,, and Q = |Ji_, V;. Now construct
Uy, ..., Uy € CF(R™) such that

(A1) each u; is supported in V]
(A2) u;(x) >0 forall xeR",
(A3) Z —o 4;(x)=1forall xe Q.

Now take feX(R). Then f=g|, for some ge C{(R") with |g|, =
|fle < . Thus we can think of f as being in C5(R"). We can write

N

fx) =3 u(x) f(x) for xeQ.
j=0
Now define y;:R"->R by ¥;=(u;f)o¢;, j=1,..,N. Note that
(u; f)(9;(x)) =01if ¢,(x) ¢V, = ¢,(Q). Hence y; is supported on Q.
The notation we are developing here will be used throughout this section
in the various results we shall establish, so the reader needs to have
internalised the terminology to understand our subsequent arguments.

LemMA 4.2. Let se CE(R") be supported on Q. Define t = Slgr, and the
extension operator E as in Definition 2.1. Then Et € CX(R") and is supported
in B.
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Proof. The fact that Et e C5(R") is the substance of Theorem 2.2. To
see that Et is supported in B, suppose x ¢ B. If x, >0 then (Et)(x)=
t(x) = s(x) = 0, since s is supported on Q and Q = B. If x, <0, then

k+1 k+1

Ei(x)= Z ALt(x', —x, /i) = z As(x', —x, /).

Suppose |x,| = 1. Then for 1 <i<k+1,

1 1

| = = .
/i1 Gy Pl > ey

If |x,| < 1, then since x ¢ B, there is a j with 1 < j <n—1 such that

Ixj|>1>k+1-

From this we conclude that if x ¢ B, then (x', —x,/i)¢ Q for 1 <i<k+1.
Hence, (Et)(x)=0. |

Define ¥; =y;|p" . Then by Lemma 4.2, E¥,; is in C§(R") and is sup-

J

ported in B. Define 6, = E¥; o ¢;'. If x ¢ G, it follows that ¢;'(x) ¢ B and
) EY’j(qﬁj‘l(x)) = 0. From this we conclude that the support of §; is in G,
j=1,..,N. We are now finally in a position to define our extension
operator L as

Lf=u0f+.§ 6,. (10)

LemMa 4.3. Let Q be a V-domain. We have Lf(x) = f(x) for all x € Q.

Proof. Take x € Q. By reordering if necessary, we can assume that x
belongs to Gy, ..., G,; but not to G, ..., Gy. Thus,

Lf(x) = uy(x) f(x)+ ‘Zl 0;(x)

=) [+ Y B ().

Now fori=1,..., M, xe 2 n G, and so ¢;'(x) € B, . Hence,

E¥,(¢;' (%)) = (u £ )($:(¢7 (X)) = (w4 [ )(x).
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Finally, because u;,(x) =0,i=M+1, ..., N,

Lf(x)=uy(x) f(x)+ 'Zl (%) f(x) = () f(x)+ ; u(x) f(x) = f(x). 1

Because of Lemma 4.3, L certainly has the potential to be the required
extension operator. However, the main question is whether L is bounded.
This question turns on the simple observation:

N
IZA llwr < Netg Sl + 3 116 llge-
j=1

The next result examines the quantities ||6,||r». We shall drop the subscript j
temporarily and simply work with @ = E¥ o ¢! supported on a set G,
which typifies G;.

LemMa 4.4. Let Q be a V-domain. Let w satisfy (W1)~(W6). There
exists a number C > 0 such that

10ler < Clluflle  forall  feX(€).

Proof. Let f € X(Q). ForaeZ", |« <k, we consider the integrals
I, = j f w(x—y) |D*O(x)—D0(y)|?dxdy and I, = j |D*0(x)|? dx.
R" JR" R"

Let % be a bounded subset of R"” which contains G. Moreover, suppose
there exists # > 0 such that |x—y|># for all xe G and y e R"\%. Then,
because 6 is supported on G, Lemma 3.7 provides a number ¢, such that

L<et| | wx=y)1D00)— DO dx dy.
4 JY
Again, because 0 is supported on G,
L= D0 dx,
2

and so we conclude that |0z <c; ||0ls. Since ¢! is a locally (k+1)-
smooth mapping, Theorem 3.13 shows there is a number ¢, > 0 such that
10ly = |E¥ o ¢y < c; IE¥P 414y Now, by Theorem 2.6, we can find a
constant ¢; > 0 such that

10llr < cic, ”EYI”(;S‘I(% <ci6 |EY | <3 "T”R'jr-
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Because ¥ is supported on Q, < Bn R’,, we can again apply Lemma 3.7
to obtain a constant ¢, such that

JIR" JR" w(x—y) |D“Y’(x)—D°‘Y/(y)|2dxdy

<e [ [ wx—y)ID"¥e)-D Py dxdy,

for all « € Z", with |a| < k. Therefore, there exists a constant cs such that
16l < c5 1Pl < s 1¥1s, = ¢s W, -

Moreover, since i = (uf) o ¢, an application of Theorem 3.13 shows that
there is a constant ¢4 such that

10l < €5 lluf o dlls, < co lluflges.)
= ¢ [[ufllene
<c lufle- |
THEOREM 4.5. Let Q< R" be an open, bounded V-domain. Let
w: R" > R be a measurable function satisfying (W1)—(W6). Let f e X(Q).

Then there exists a continuous, linear mapping L: X(22) - X (R") such that
forall feX(Q),

1) Lfleg=f
2) |ILf|lgr < M | flq for some constant M independent of f.

Proof. Let fe X(Q2) and define Lf as in Eq. (10). By Lemma 4.3,
(Lf)(x) = f(x) for all x € Q. Furthermore,

N
ILA Nl < Nt fllan+ Y 160l
j=1

An application of Lemma 4.4 shows that ||0,]z: <c¢, ||lu; f]o for some
suitable constant ¢; > 0. Thus,

N
IZ A Nlwr < llto fler+ X 1 s fllg-
j=1

j=

An application of Lemma 3.15 gives

N
ILA Nlar < g fllar + X €16 [1f llas
j=1
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for some number ¢, independent of f. Furthermore, since u, is supported
on V, = Q we can use Lemma 3.7 and a further application of Lemma 3.15
to obtain constants ¢;, ¢, > 0, independent of f, such that

ILfllrr < ¢35 [l fllo +Neres | fllo
<6 | fllg+Neie, 1f e
< (e3¢ +Neyoy) || fllo-
Using this result and the fact that f € X(Q) we have
[Lflrr < ILflgr < (e3¢5 +Neyey) [ flle

~(ectNae) (3 [ ID7@ParHfG ) <o

o) <k
Thus Lf € X(R"). |

Let Z(L2) be the completion of X(£) with respect to | -||o. Let #(2) be
the completion of X (£2) with respect to |-|,. We now apply our extension
results to functions in Z(£2) as follows.

THEOREM 4.6. Let Q< R" be an open, bounded V-domain. Let
w: R" > R be a measurable function satisfying (W1)~«(W6). There exists a
continuous linear operator £: Z(Q2) — Z(R") such that for all f € Z(Q),

A1) Zfla=f
2) 1L fller <M |fa, for some constant M independent of f.

Proof. The result is derived from Theorem 4.5 using a standard
abstract analysis result (see [7, 18.19, p. 1807]). |

We are able now to prove our final extension theorem.
THEOREM 4.7. Let QcR" be an open, bounded V-domain. Let

w: R" - R be a measurable function satisfying (W1)-(W6). Given f € % (L),
there exists a function f, € % (R") such that

1) fle=f
2) |f.lgr S M |f|q for some constant M independent of f.
Proof. We shall work with the quotient space Z(Q2)/II, ={f+1I, :
feZ(Q2)}. For f € () define

ILf + 11l = | fla>
If + I |l, = inf{|ulg: u € Z(R") and u|, = f}.
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We claim that ||-||; and |-||, are norms on Z(Q)/II,. Now, |f|p, =0 if
and only if fell,, and so ||-||; is clearly a norm on Z(Q)/II,. Given
feX(Q), Theorem 4.5 allows us to find an Lf € X(R") which satisfies
Lflo=f and |Lf|g» <oco0. Trivially, Lf € #(R"). As in Theorem 4.6, we
can deduce that for each f € Z (L), there is an £ f € #(R") which satisfies
Lflo=f and |Z f|g < 0. Hence, | f + I, exists. Let f, € #(R") satisfy
|folgr = inf{|u|g: ue H(R") and u|, = f}. Suppose |f+II|l, =0, then
|folgn =0 and f, e Il,. Since f,|, = f this implies f € II,. Conversely,
suppose f € Il,. Then f, is just the polynomial in /7, for which f,|, = f,
since then |f,|z» = 0. Hence ||- |, is a norm on Z'(Q)/I1,.

The quotient map Q: Z(R2) - Z(R2)/II, is defined by O(f) = f+1I,,
for feZ (). This is a linear, continuous, open map from Z(L2) to
Z(Q)/I1,, (see for example [14, p. 31]). Since Z(L) is complete we can
thus deduce that the normed spaces (Z(2)/II,, | -|l;) and (Z(R2)/I,, |- ,)
are also complete. For details see [7, 18.16, p. 179]. For all f € Z(Q2), we
have the simple inequality

If + Il = |fle = |fele < |felrr = I1f + 1Tl

Hence, using standard Banach space theory [7, Corollary 22.12, p. 218],
there exists a f# > 0 such that

[felrr = If +Iill; < Bf +Iilly = B | fle.  forall feZ(8).

A consequence is that for each f e X(Q2), we can find f, € #(R") such
that f,|, = f and |f|zgr < B |f]o. Another application of [7, 18.19, p. 180]
completes the proof. ||

5. THE WEIGHT FUNCTION w AND THE DOMAIN @

The extension results developed in the previous section are dependent on
the weight function w satisfying conditions (W1)—-(W6), as given in Section 3.
We give now some examples of weight functions for which these properties
hold.

We begin with the familiar non-integer-valued Sobolev seminorms. Here
the weight function w is defined by w(x) = |x| ™ * for xe R" and 0 < A < 2.
It is clear that w satisfies conditions (W1)-(W4) and (W6). To see that (W5)
is satisfied, let ¢ be a locally 1-smooth map on R". Then ¢~ is also locally
1-smooth. Let 22 be a bounded domain. By Taylor’s formula, there exists a
constant K > 0 such that for all x, y € Q,

=y =16""(¢(x)) = ¢ (S(X)I < K [$(x) = d( ).
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Hence, for all x, y € Q with x # y,

1 1
—<Kn+/1—=Kn+lw(x_ .
90— dCT =y »)

Since ¢ is a bijection, x =y implies w(¢d(x)—d(y))=w(x—y)=w(0).
Hence, w(¢(x)—¢(y)) <max{K"** 1} w(x—y) for all x, ye Q. Hence,
condition (W5) is satisfied.

For our second example let w(x) =e"™ for x e R". Again it is easily
verified that w satisfies conditions (W1)-(W4) and (W6). Let ¢ be a locally
smooth map on R”. Let Q be a bounded domain. For all x, y € Q,

w(¢(x)—d(y)) =

= yI*=l¢(x) = ¢’ < Ix—yI>< sup |x—y|*

x,yeQ

Because  is bounded we can find a K > 0 such that sup, , .o |x—y|* < K.
Thus,

lp(x)—¢(WI*=|x—y|*—K, forall x,yeQ.
Thus, for all x, y € Q,
W(P(x) — B()) = e WO < P +K Z oKy y).

Consequently, condition (W5) holds.

Our previous example forms part of a family of such examples. Let w be
a continuous, positive-valued function in L'(R") satisfying w(—x) = w(x)
for all xe R". We also assume that there exists some ball B; = {xeR":
|x| <} such that on R”\B;, w(x) is a decreasing function of |x|. It is
straightforward to see that w satisfies (W2)—(W4). Furthermore, there exists
A > 0 such that w(x) < 4 for all x e R". Let ¢ be a locally smooth map on
R” and let 2 be a bounded domain. Since w is continuous we can find
M > 0 such that w(x—y) = M for all x, y € Q. Thus

w(d(x)—d(y)) <A< % w(x—y) forall x,yeQ.

Hence, (WY) is satisfied. Finally, we examine condition (W6). Take y € R".
If y e B; then a similar argument to that above proves the existence of
C > 0 such that w(y) = Cw(x) for all xe R". If y ¢ B;, then w(y) = w(x)
for all x € R” with |x| > |y|. Thus w(y) > min{1, C} w(x) whenever |x| > |y,
showing (W6) holds.

The condition on the domain is more difficult to exemplify. If Q is a
domain which lies locally on one side of its boundary 90, then Conditions
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(V1) and (V2) in Definition 4.1 will hold if the boundary 0f2 is an (n—1)-
dimensional, (k+ 1)-smooth manifold in R". An easy example of a set 22 in
R?, which satisfies (V3) is given by any disc. To construct the open sets G,
for the disc B(0, r) = {x € R*: |x| < r} we can take

sz{xe R?: x = (pcos 8, p sin ) and

Tr O (j—D= (j+D)= .
_— - =1,..,8.
8<p<8, g <0< g , j s e 8

The condition that Q is a V-domain is essentially a fairly strong require-
ment on the smoothness of the boundary 0Q. For example, this condition
implies the strong local Lipschitz property, the uniform cone property, and
the segment property (see Adams [ 1] for the appropriate definitions).
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